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Abstract - The opportunities for e-commerce, entertainment, and many other services, which can be provided through the 

internet, have stimulated the growing need for recommendation systems to improve the experience of users. Such 

recommendation systems are based on complex matrices and need substantial equipment with high maintenance costs; 

therefore, they are hindered by scalability and performance constraints. Aims: We want to show how organizations could 

use serverless computing and leverage the exponential development of artificial intelligence to manage the scalability of 

effective recommendation systems with ease of deployment and usually low operating costs. Study Design:  This paper 

describes the architecture and development of a serverless recommendation system for an e-commerce application based on 

AWS Lambda and SageMaker. The potential of the serverless to reduce costs, scale automatically, and be deployed and 

maintained easily is also investigated. Furthermore, we incorporate Amazon SageMaker for training, deploying, and 

managing machine learning models behind the recommendation engine. Place and Duration of Study: Organizations across 

various industries have implemented this approach in 2023 and 2024. Methodology: Collaborative, content-based filtering 

and the hybrid approach are employed in the recommendation process, and the results are generated in real-time. The 

complete application is built using the serverless computing model, in which AWS Lambda runs simple code in response to 

events or user interactions. In contrast, Amazon Sage Maker is used to train the models and make predictions. Exposing 

APIs is done with AWS API Gateway; storing users’ data is done with Amazon DynamoDB, while the model artifacts and the 

big data are stored in Amazon S3. Results: This architecture helps to avoid provisioning and managing servers, which makes 

the operation less complex. In this paper, we will describe all stages of the work, from data preprocessing to the generation 

of recommendations. Conclusion: The results thus demonstrate the exceptional scalability and responsiveness of the 

recommendation engine, capable of accommodating users’ real-time needs with trivial time delay. 

Keywords - Serverless computing, AWS lambda, Amazon sagemaker, Machine Learning, Collaborative filtering, Content-

based filtering, Scalability. 

1. Introduction 
Recommendation systems are now incorporated into 

nearly every contemporary online service, with special 

emphasis on e-commerce, media hosting, and social 

networking. The way that they have been able to increase 

engagement and customer satisfaction, and thus increase 

revenues, has been through personalizing the messages to 

the users. Central to these systems are machine learning 

personas, which analyze user behavior to recommend 

products or content, among other things. Conventional 

recommenders are designed in a centralized setup where 

infrastructure has to be scaled up by hand and is expensive 

to maintain. [1-4] However, with the latest trends in 

serverless computing, companies like Amazon provide 

serverless computing solutions like AWS Lambda and 

Amazon Sagemaker for developing recommendation 

engines in a better way. Serverless computing is a model in 

which applications are executed without the provision of 

servers, implementing overhead minimization with 

provision for scaling as per requirements. In this research 

paper, an extensive framework for creating an AI-based 

recommendation system utilizing AWS Lambda and 

Amazon SageMaker is developed.  

 

The goal of this architecture is a low-cost, scalable, 

real-time recommendation engine that does not require 

constant updating of the underlying application 

infrastructure to reflect user behavior. This is made possible 

by embedding Services such as serverless technologies 

coupled with the use of Machine learning algorithms to 

make Smart personalized recommendations. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Evolution of Recommendation Techniques 

Thus, the development of recommendation approaches 

has been through considerable progress in the years due to 

technological advancement, the shift in customer behavior 

and the complex data set. Achieving this understanding is 

crucial for analyzing the current status of and future 

prospects for recommendation systems. 

 
Fig. 1 Evolution of recommendation techniques 

 

1.1.1. Early Approaches 

Content-Based Filtering: Recommendation systems 

started as Content-Based Filtering (CBF) techniques at the 

end of the nineties. The entire concept underlying these 

systems is based on the assumption that item characteristics 

and user profiles can be used to produce recommendations. 

For example, if a user likes science fiction movies, then a 

CB filtering system will use attributes such as genre, 

director, or keywords to describe similar movies. CBF did 

include an aspect of recommending products to customers 

specific to their needs without needing information from 

other customers, as seen in Figure 2; however, it had 

limitations. The major disadvantage was that users only saw 

items they probably would like, preventing them from 

exploring new genres or interests within a band. Therefore, 

the given strategy sometimes resulted in an array of 

suggestions that did not enrich users’ experiences and let 

them discover various materials. 

1.1.2. Collaborative Filtering:  

Harnessing User Interactions: The fast-growing Internet 

increased the amount of user data, and the filtering 

techniques known as Collaborative Filtering (CF) are 

stronger than the filter that relied much on the content 

information of the products. CF uses activities like ratings, 

clicks, or purchases made by users to discern relationships 

between entities and users as well as associations between 

items. Within CF, there are two primary methods: user-

based collaborative filtering and item-based collaborative 

filtering. User-based collaborative filtering compares the 

customers’ similarities. For example, suppose User A and 

User B are friends (indicated by common movie preferences 

where User A and User B have watched similar movies). In 

that case, then whatever User B has enjoyed and User A has 

not yet come across could be recommended to User A. On 

the other hand, we have item-based collaborative filtering, 

which works on the similarity between the items in 

question. If many users mutually appreciate two items, then 

they are similar. For instance, if many users who liked 

“Inception” also liked “Interstellar,” then the films in the 

latter set can be suggested to a user who has rated 

“Inception.” Although CF greatly enhanced the 

recommendation precision, its drawbacks include the cold 

start problem, where new users or products are not 

adequately described for recommendations and the 

scalability issue, where large volumes of data may be a 

problem. 

1.1.3. Hybrid Approaches: Combining Strengths:  

Due to inherent weaknesses in CF and CB, hybrid 

recommendation systems started getting introduced with the 

specific intention of overcoming those weaknesses. A 

number of these systems can be seen to address varying 

levels of interaction between users and items successfully, 

as well as focus on situations where item characteristics can 

improve the general recommendation quality.  

The advantage of studying the two approaches 

individually is that the hybrid systems can give more 

accurate and varied recommendations. For instance, Netflix 

is using a combination of collaborative filtering and content-

based filtering and incorporating machine learning 

algorithms into it. This approach, in turn, helps Netflix to 

provide highly individualized recommendations that would 

suit the user specifically. At the same time, it exposes the 

user to content he or she might not necessarily have gone 

through. The flexibility of integrating a number of 

recommendation approaches has become extremely valuable 

in increasing the density and satisfaction of the user 

experience across multiple contexts. 

1.1.4. Deep Learning and Advanced Algorithms 

Recently, with the emergence of deep learning and even 

higher levels of machine learning, recommendation methods 

have been drastically changed. Neural collaborative 

filtering, RNN, and CNN have made it possible to have 

better representations of the users-’ relations. One example 

is Neural Collaborative Filtering (NCF), which relies on 

neural networks and can capture a non-linear relationship, 

whereas most approaches cannot. Based on the study, it has 

been shown that NCF can provide better performance than 

CRM in many use cases, providing more complex 

recommendations.  

Also, the sequence-based recommendation approach, 

used with RNNs, looks into the temporal interactions since 

it is possible to predict the next items users are likely to 

engage with based on previous engagements over time. This 

capability increases the dynamics of recommendation 

relevancy from user trends and often dynamic preferences. 

Early Approaches: Content-Based Filtering

Collaborative Filtering: Harnessing User 
Interactions

Hybrid Approaches: Combining Strengths

Deep Learning and Advanced Algorithms

Context-Aware Recommendations

Reinforcement Learning in Recommendations
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1.1.5. Context-Aware Recommendations 

New recommendation techniques have also stimulated 

the concept of context-aware systems that incorporate time, 

place and the user’s feelings in addition to user and item 

data. That is why integrating contextual data into these 

systems offers more accurate suggestions corresponding to 

certain situations. That is why an example of using 

contextual information can be a restaurant recommendation 

system, where different offers will be shown depending on 

the time of day or the user’s location. If a user enters a 

search query about dining at 12:00 PM, the system may 

suggest lunch places nearby, while if the same user submits 

a search query at around 9:00 PM, the system may 

recommend dinner places or places with bright lighting. One 

way of improving customer satisfaction is to support 

recommendation sources with contextual information so that 

recommendations are aligned with both user and 

environmental factors that may influence the decision-

making process. 

1.1.6. Reinforcement Learning in Recommendations 

RL is another emerging topic in the field of 

recommendation systems. RL algorithms derive a strategy 

for selecting content based on the positive feedback it 

receives over a period of time and adjust systems 

accordingly to increase user satisfaction. In contrast to prior-

art techniques that work with a fixed database of inputs, RL 

can dynamically alter the recommended action as and when 

the user interacts with the system and his preferences are 

updated. This technique allows the system to deliver tailored 

experiences over time proportional to the user’s interests to 

avoid cases where recommendations are no longer of 

interest. For instance, if reinforcement learning is applied to 

a music streaming service, it sharpens its playlist 

recommendations according to how users react to 

recommended songs, gradually identifying which songs 

have been liked. This, therefore, not only creates a more 

satisfying experience for the ‘user’ but also ensures that they 

continue to log into the SD card and, therefore, use the 

platform in the long run. 

1.2. Benefits of Serverless Architecture for AI and 

Machine Learning 

Serverless has finally become a powerful model for 

developing and deploying AI with a greater number of 

benefits than older, traditional models. [5,6] This section 

builds upon the main advantages of a serverless architecture 

approach to AI and machine learning. 

 
Fig. 2 Benefits of serverless architecture for AI and machine learning 

1.2.1. Cost Efficiency 

Serverless computing is well known for optimizing 

costs compared to its counterparts. Conventional computing 

paradigms entail significant overheads to organizations in 

terms of resource provisioning and management of 

dedicated servers, even if such servers’ utilization rates are 

low. In contrast, serverless computing software follows a 

usage-based consumption model. This means that the users 

are charged only for the actual computation resources they 

have invoked during the execution of their code but are not 

charged for the amount of time the server they have been 

assigned spends in an idle state. For example, in some AI 

applications, there can be highly fluctuating processing 

loads; with this model, organizations can supplement their 

computing capacity. To this extent, it becomes easy to cut 

operational costs, which explains why it may suit a start-up 

or an enterprise firm. 

1.2.2. Automatic Scalability  

It can be articulated that the inherent aspect of 

serverless architecture is scale, which is optimal for machine 

learning and AI use because of their varying workload 

patterns. In a serverless environment, it is mostly measured 

that resources are elastic and can grow or reduce based on 

the traffic generated within the application by users. 

Dynamic scaling can also be beneficial since it can respond 

quickly to traffic loads, as seen in product launch season or 

during certain marketing periods. For example, a 

recommendation system built with AI approaches does not 

require intricate scaling to work with a large number of user 

requests at the same time. This capability makes 

communications with users fast, and the services available 

to users have some reliability. 

1.2.3. Simplified Infrastructure Management 

Serverless runs decentralized applications instead of 

focusing on infrastructure. This allows developers to build 

and deploy applications easily. Such abstraction of 

infrastructure management makes deployment easier and 

lowers the cost and complexity of having to provision and 

set up servers. In the case of AI and machine learning, that 

translates to saying that data scientists and engineers can 
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focus on the model, data, further experimenting, and 

optimization without getting lost in choosing the right 

infrastructure. For instance, AWS Lambda and Google 

Cloud Functions let teams put machine learning models into 

functions, which means a team can often operate at a pace 

that results in the organization of a function. 

1.2.4. Enhanced Development Speed 

A serverless solution encourages even shorter 

development cycles, allowing teams to launch new features 

and updates easily. This is especially true in AI/machine 

learning; continuous testing and evaluation are essential for 

achieving the project’s main goals. It allows the developers 

to easily write the code and/or design models instead of 

thinking about the suitable server, their management and 

scaling. Data storage, processing, and model deployment 

through managed services are also more object-oriented to 

enhance development since supported constituents can be 

integrated immediately. Thus, organizations can accelerate 

the release of their AI and machine learning applications 

and gain a competitive advantage. 

1.2.5. Improved Resource Utilization  

In serverless computing, resources are consumed much 

better than consumptions in conventional server-based 

solutions. The fact that serverless functions are executed on-

demand and are only alive for the time of the event fired and 

then deleted utilizes resources much more efficiently. This 

approach reduces the probability of resource wastage, 

making the whole process more efficient. In a computing 

context, this becomes advantageous for AI and machine 

learning in that one can always procure computing 

capability where it is required most at the time of high 

demand, for example, during model training sessions or 

inference. Flexible resource use is another advantage, which 

ensures cost effectiveness because organizations use 

resources based on need and are charged correspondingly. 

1.2.6. Seamless Integration with Other Services 

Serverless architecture allows for the effortless 

connection with numerous cloud services and other relevant 

tools that help advance AI and ML use. For example, in 

serverless functions, it is relatively possible to integrate 

databases, storage technologies, and messaging services to 

ingest and process the data in question. Ainer-based 

workflows are beneficial in cases where data is passed from 

one stage to another, for example, from data capture data 

preprocess to training and prediction stages. Using existing 

cloud services allows organizations to quickly develop AI 

prototypes and go live with applications that cannot require 

significant customization. 

1.2.7. Enhanced Reliability and Availability 

An Azure infrastructure with reliability and availability 

factors has been embarked on. Most cloud computing 

providers have native high availability and will give 

suppliers measures to safeguard applications from hardware 

failures or other downtimes. This feature is paramount for 

more mathematical-driven solutions that need high 

availability, like a real-time prediction service. In serverless, 

an organization enjoys automated load balancing and 

failover, thus minimizing the chances of disruption of 

services and improving the user experience. This reliability 

is especially desirable in applications that are deployed in 

manufacturing premises where availability is of paramount 

importance. 

1.2.8. Focus on Innovation 

Last but not least, serverless architecture also lets 

organizations focus on innovation, not sweating the details. 

By minimizing the requirement for infrastructure 

management and allowing for the speed of deployment, 

teams can focus more time on descriptive, predictive, and 

prescriptive analysis or developing new ideas using complex 

algorithms and improvements to existing machine learning 

algorithms. This increases the chances of forming better 

teams that invest their energy in finding the best solutions to 

the organization’s challenges and are encouraged to think 

creatively to design better AI solutions. For instance, 

through cloud deployment, organizations can leverage new 

machine learning methods or experiment with others, such 

as Natural Language Processing or Computer vision in 

applications, without the barriers posed by conventional 

approaches. 

2. Literature Survey  
2.1. Traditional Recommendation Systems 

Recommendation systems have been an important 

domain of study and practice of information retrieval and 

data mining for more than two decades. Early approaches 

primarily employed two techniques: These two are 

Collaborative Filtering (CF) and Content-Based Filtering 

(CBF). [7-11] Collaborative filtering remains the most 

commonly used method, generating recommendations based 

on user interactions. It can be categorized into two methods: 

item-based approach and user-based approach. User-based 

collaborative filtering involves matching similar users and 

recommending items that those users like. For instance, if 

the two users say User A and User B have similar tastes 

while browsing a site or application, User A will see what 

User B has already ‘liked’ but has not yet encountered. This 

method makes use of the rationale that users with the same 

interests will also like similar items. However, item-based 

collaborative filtering emphasizes the relationships between 

the items and not the users. First, if a user likes an item, then 

the system suggests similar items by analyzing user 

activities, and this is generally more effective with a large 

number of users but a small number of items. 

On the other hand, Content-Based Filtering (CBF) 

works to produce recommendations based on the attributes 

of items, which include genre, tags, descriptions, etc. For 
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instance, in a movie recommendation system where a 

certain client loves Sci-Fi films, all the films the system 

recommends will be in that particular genre. Content-

oriented approaches are highly effective at offering product 

suggestions based on user preferences. At the same time, 

they have issues with providing variety or exposing the user 

to new items from different categories. Further, CF and 

CBF are the fundamental recommendation systems 

employed to facilitate the development of current complex 

recommendation systems today. 

2.2. Hybrid Approaches 

These scenarios necessitated the development of new 

Recommendation Systems that are more sophisticated than 

Collaborative Filtering and Content-Based Filtering. In this 

way, integrated methods Systems obtain better results and 

higher performance than pure recommendation systems. 

These systems use every part of the model, including user-

item interactions and meta-data of the items, which enriches 

the recommendation algorithms involved. One of the hybrid 

models is the Netflix recommendation engine, which uses 

collaborative filtering, content-based filtering and machine 

learning algorithms. This way, it becomes possible to please 

users with highly targeted recommendations based on their 

activity in the service and content provided while 

considering the features of individual program offerings. 

This kind of hybrid system has exhibited a significant 

degree of enhancement in terms of user experience, thereby 

increasing the chances of clients sticking to a particular 

application or service, be it e-commerce or streaming 

services. 

2.3. Serverless Computing in AI and Machine Learning 

In the last few years, the interest in serverless 

computing has risen rapidly in the domains of AI and ML, 

mostly because of several features, with the major one being 

the ability to manoeuvre execution environments without 

the need to deal with infrastructure. Here, one gets the 

following advantages: dynamic scaling, a means by which a 

system can scale resources depending on the user demand, 

which is particularly useful in variable workloads, which is 

often the case in AI applications. In addition, serverless 

architecture increases scalability and greatly reduces costs 

because developers pay only for the time used on the server, 

with no overhead for unused time. AWS Lambda and 

SageMaker are a perfect case of using one application to 

build one serverless AI application from scratch and another 

that enables developers to extend with auto-scaling and 

event-driven models of Lambda easily. 

2.4. AWS Lambda and SageMaker in Production Systems 

With the increase in the use of serverless architectures, 

several real-world applications of recommendation systems 

are coming up, showing the usability of this approach. For 

http request management, AWS lambda is often used, and 

these systems are event-driven. In contrast, Amazon 

SageMaker is available for ML model management and its 

process, including training and deployment of models. Both 

of these services are tightly coupled to coordinate real-time 

data and intelligent models to provide timely and relevant 

recommendations. It also helps to achieve easier 

deployment and improved reaction to user activities, leading 

to a better general user experience. Businesses using 

serverless architectures are now discovering that the AWS 

Lambda software and SageMaker provide the speed and 

intelligibility required for modeling new recommendation 

systems, which are important in fast-paced environments. 

3. Methodology 
3.1. System Architecture 

The proposed serverless AI recommendation engine 

utilizes various AWS services to create another cost-

effective, flexible, real-time recommendation application. 

[12-16] All the services have a certain place within the 

architecture where they provide a means of communication 

between event-driven functions, machine learning models, 

and data storage. Each of the above components has a 

specific role in the system, and the following is a 

comprehensive explanation. 

3.1.1. AWS Lambda  

AWS Lambda is a compute service that executes code 

in response to events and executes it without the course of 

being managed. For the recommendation system of a 

platform, Lambda functions are invoked whenever a user 

action is made, such as viewing a product or making a 

purchase. Lambda, being an event-driven service, allows 

high volume quick execution of low logic backend code, 

which empowers real-time processing of user activity. This 

makes it possible for the recommendation engine to update 

users’ profiles in real-time and produce recommendations 

whenever required. Further, Lambda is elastic; it 

automatically scales according to the traffic to deliver low 

latency responses in the system in both high and low traffic 

conditions. 

3.1.2. Amazon SageMaker  

Amazon SageMaker is a one-stop machine learning 

platform where you can easily create, train, deploy, and 

manage machine learning models. SageMaker uses training 

recommendation models in this system based on user past 

activity data and item data attributes. These include 

collaborative filtering, an aspect essential for recommending 

systems, and content filtering, which is also central to the 

recommending system. Once trained, SageMaker attaches 

them to hosted endpoints, where they can be used for real-

time inferencing. This integration enables the 

recommendation engine to pull results based on real-time 

user engagements. SageMaker also handles the same issues 

related to the scalability of the model inference process with 

large-scale requests. 
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Fig. 3 System architecture 

3.1.3. Amazon DynamoDB 

AWS DynamoDB is an ultra-scalable, highly effective, 

fully managed service for creating and operating NoSQL 

databases for low-latency web applications. In this 

architecture, DynamoDB stores different types of user 

interaction data like views, purchases, clicks, ratings, etc. 

Every conversation is documented as it happens and is 

saved for individual use to give recommendations. 

Consequently, the time taken to retrieve the user data to be 

processed is very minimal and therefore, DynamoDB 

supports the execution of the recommendation engine to 

provide relevant results in almost real-time. Also, the 

DynamoDB is versatile and capable of supporting both 

structured and unstructured data, which enables storing user 

data and important activities in the recommendation 

process. 

3.1.4. Amazon S3 

Amazon Simple Storage Service (S3) is an important 

service that Amazon uses to store several data sets, models, 

and other static files in a secure and scalable manner. In this 

architecture, S3 is used as a store to capture data needed for 

training the recommendation algorithms, historical user 

interaction data and data describing the items being 

recommended. S3 also contains the trained model artifacts 

used in serving on SageMaker in real-time. This means that 

S3 enables the system to store large volumes of data in its 

practically inexhaustible capacity. Moreover, due to its high 

durability and availability, S3 stores important model data 

for backup; in case of any failure, the system will recover 

quickly. 

3.1.5. Amazon API Gateway 

The Amazon API Gateway is a service that creates, 

publishes, and secures APIs all over Amazon at a given 

scale. In the conceptual recommendation engine proposed 

here, the role of API Gateway is to act as the first point of 

contact for outside applications like web or mobile to 

integrate with the backend system. API Gateway brings 

forward RESTful APIs that call AWS Lambda functions 

any time a user takes an action. These APIs enable the 

recommendation engine to listen to requests and respond in 
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real-time, for instance, with recommendations for a certain 

product or content. API Gateway also takes security 

responsibility for the system and controls access, rate limit, 

and observation of API usage so that the recommendation 

service can handle loads and protect itself from threats when 

responding to high traffic. API Gateway also provided 

WebSocket’s API, which is used here to enable a callback 

endpoint where the response of the Inference from the ML 

model is pushed   

3.1.6. AWS Step Function 

AWS Step Functions is a visual workflow service that 

helps developers use AWS services to build distributed 

applications, automate processes, orchestrate microservices, 

and create data and machine learning (ML) pipelines. In this 

architecture, the step function performs 4 steps, including 

storing the request data in DynamoDB, triggering an 

inference request to the Sagemaker Endpoint, updating the 

response back in DynamicDB and then triggering a callback 

through the WebSocket API to push the inference response 

to the browser.   

Table 1. System architecture 

Service Functionality 

AWS 

Lambda 
Event-driven execution of backend code 

SageMaker 
Training and deploying recommendation 

models 

DynamoDB Storing user interaction data 

S3 Storing model artifacts and large datasets 

API Gateway API endpoint for triggering Lambda functions 

Step 

Function 

Orchestration engine used to manage a 

sequence of steps 

 

3.2. Model Selection and Training 

When constructing a recommendation engine, the type 

of model used is certainly one of the key factors deciding 

the reliability and relevance of recommendations. In this 

architecture, we use both collaborative filtering-based and 

content-based filter recommendation techniques. Together, 

this means a better update of the recommendations since 

both user behavior and the peculiarities of items can be used 

to create more personalized suggestions. By doing it 

through Amazon SageMaker, these models can be easily 

trained and deployed in a cost-effective, scalable, and fully 

managed serving environment that will provide the 

recommendation system with real-time inference without 

increasing latency. This hybrid approach involves two 

models, which are explained in detail as follows. 

3.2.1. Collaborative Filtering Model 

Recommendation systems developed by using 

collaborative filtering methods are widely employed 

techniques in many applications. It does this through past 

transactions users have had with items such as purchases, 

views or ratings from other users to make patterns of the 

user. The collaborative filtering model, applied in this work, 

is a model based on the user-item interaction history. The 

basis of this assumption is that if users A and B are assumed 

to be similar based on use behavior, goods and services that 

the user prefers, A will likely be suggested to user B. There 

are two often used methods in collaborative filtering: user-

based and item-based filtering. Collaborative filtering is 

trained in this system using methods such as matrix 

factorization or the nearest neighbor approach to identify 

hidden relations between users and items. This model is 

especially useful in detecting latent relations concerning the 

user’s activity, for example, suggesting a product that a user 

has not searched for but is frequently purchased by other 

users with similar activity patterns. 

3.2.2. Content-Based Filtering Model 

Content-based filtering, on the other hand, makes its 

recommendation through the attributes associated with the 

items. It pays much attention to the attributes of items (such 

as tag, category, description, etc.) and compares them with 

users’ profiles to recommend related items. For instance, in 

a movie recommendation system where a user has indicated 

a preference for science fiction films, then content-based 

filtering recommends other films in similar genres, 

directors, etc. The content-based filtering model is trained 

with ‘item attributes,’ which may be a tag or keyword, a 

description, or product category data. Amazon SageMaker 

processes this metadata and constructs a model that can be 

trained to map a given item with the user’s preference based 

on item attributes. This is especially important for getting 

recommendations for products such as new products or 

products with very little interaction data: the TA can 

recommend such products because they have attributes that 

the classification identified. Content-based filtering also 

provides the solution for personalization in a way that 

recommends content with which a user has demonstrated 

some interest. That is, using user information and item 

information together, and the recommendation engine can 

aim at a more persuasive recommendation system. The 

combined technique effectively provides an advantage of 

surpassing the limitations of the two methods, and it also 

makes sure that users are provided with recommendations 

that align with their behavior and attributes. First, 

Sagemaker can perform model training and deployment at 

an industrial scale, so both models can be trained on large 

datasets at once and updated frequently due to changes in 

user behavior and the availability of new item catalogues. 

3.3. Data Flow and Processing 

The centrifugal data flow and processing pipeline is the 

backbone of the serverless AI-based recommendation 

engine to capture user interaction data and process them to 

deliver real-time recommendations. In the following, we 

dissect the main stages: user-interaction capture and 

handling, generation of recommendations, and their 

delivery. 
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3.3.1. Capturing User Interactions 

The data flow starts from the time users interact with 

the platform in any way, such as viewing, in the shopping 

cart, or the purchase of products. Such interactions afford 

the recommendation task with a critical vantage point – user 

preferences are useful inputs. These events are taken by 

front-end applications, whether web-based or mobile and 

pass through the AWS API Gateway. API Gateway offers 

RESTful operation interfaces that allow exchanging real-

time front-end and backend data. For instance, when a user 

views a product, information on the user’s ID, the product’s 

ID, together with the date and time of the action, is collected 

and passed to AWS Lambda to kick start the next procedure 

in the chain. 

3.3.2. Processing User Interactions with AWS Lambda 

AWS Lambda actions are initiated based on user inputs 

received by API Gateway. These functions perform backend 

logic, including analyzing the interaction data and 

modifying the user stored in the Amazon DynamoDB. 

Lambda is an event-based system, which means it can use 

the result of each step and process it in time to update the 

user’s profile according to the action. For example, if a user 

has browsed many products, Lambda functions will 

immediately update these views in DynamoDB. This event-

driven architecture guarantees that latency and costs are 

comparatively low because the computing resources are 

only used when individual events occur and do not have to 

be constantly managed. 

3.3.3. Data Storage in DynamoDB:  

Amazon DynamoDB is the main data delegator for 

structured user interaction information, and each user has 

one record in this database. The records contain interaction 

histories, preferences, and sometimes demographics 

pertinent to both the interactive filtering model and the 

content-based filtering model. For instance, personal 

information could include information that a user has 

previously consumed or bought to help the recommendation 

system to make recommendations. The fast read and write 

capability of DynamoDB is suitable for real-time systems in 

which the system can instantly update the user profile and 

be fast enough to get the data for recommendation 

generation. 

3.3.4. Sending Data to SageMaker for Model Inference 

After new user interaction data has been added to 

DynamoDB, the process continues with creating 

recommendations. To this end, the putative updated user 

profile data is fed to Amazon SageMaker for real-time 

inference using deployed machine learning models. AWS 

Lambda forwards the required data, such as recent views or 

purchase histories, to SageMaker to run both collaborative 

filtering and content-based filtering models. Automated 

AWS SageMaker scale confirms that the model can run 

inference as efficiently during periods of session high 

volume and activity; this way, the system can provide quick 

results. 

3.3.5. Generating Real-Time Recommendations  

The recommendation models are hosted in the Amazon 

SageMaker and run in real-time. The collaborative filtering 

model seeks patterns and similarities across users by using 

the interaction data. On the other hand, the content-based 

model tries to map user’s preferences against the item 

characteristics (for example, categories and tags). A blend 

methodology achieves those outputs; users are presented 

with familiar and diverse recommendations. For instance, if 

a user uses the system mainly for science fiction books, they 

will be recommended more of the same books and other 

books that other users with similar tastes have bought. 

3.3.6. Delivering Recommendations to the User 

Once SageMaker provides the recommendations, they 

will be returned to the front-end application through the 

AWS API Gateway. They consume the real-time 

presentation of recommendations via web or mobile 

applications, which enrich the front-end system. It may also 

appear as part of ‘You might also like’, as a 

recommendation on the right sidebar, or as a recommended 

email article. Due to the serverless system where the entire 

pipeline exists, the recommendations take even less than a 

millisecond to get delivered, and the active users stay 

interested. 

3.3.7. Data Storage and Updates in Amazon S3 

Apart from real-time data processing, Amazon S3 is 

also used to store big data and model artifacts. On the other 

hand, real-time data, such as information in the immediate 

interaction and real-time extent and intensity of user 

engagement, can be stored and processed in DynamoDB. In 

contrast, in the case of extensive databases such as huge 

interaction logs or big data, for which models have to be 

retrained, S3 storage is employed. With much data not being 

time-sensitive, the system is kept small and fast for 

performing real-time operations while still being able to use 

S3 for storing and archiving information for use in further 

updates of models in the future. Such hybrid forms of 

storage arrangements can then be effective for enhancing 

performance and cost factors, thereby simplifying the 

capacity and comprehensiveness of data handling while at 

the same time not overburdening the actual real-time 

computation requirements. 

4. Results and Discussion 
4.1. Performance Evaluation 

As the focus of many serverless applications, the 

performance evaluation of such an AI recommendation 

engine is crucial towards comprehending its applicability in 

real-world environments. To evaluate these aspects, we used 

a large-scale dataset containing 100 k-users and 1 million 

user-item interactions, which permitted testing the response 
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times of real-time recommendations and the system 

scalability under changing workloads. This section 

discusses the approaches used to measure the system’s 

performance: average latency, cost per request, and scaling 

efficiency. 

4.1.1. Average Latency  

Average latency is another measure of the degree of 

performance that shows how fast the recommendation 

engine responds. It captures the time between when the 

customer is scanned, for example, viewing a product or 

purchasing a product, and when the recommendation is 

offered to the customer again. In this evaluation, the average 

latency required by the system was measured at 150 ms 

while maintaining response rate continuities below 200 ms. 

This low latency shows how event processing can be carried 

out effectively using the Lambda function from AWS, as 

this handles user events in real-time and does not involve 

any scheduled CPU resources. Combined with the Amazon 

SageMaker to perform the model inference, the architecture 

enables instant access to the interaction data and about 1 

second response time for the recommendations. This is 

especially important in heavily frequented areas, where even 

slight latency can lead to an overall decrease in Customer 

Experience, thus pushing up bounce rates while 

acknowledging dissatisfied customers. The capability to 

ensure low latency is beneficial because user engagement 

improves; thus, these parameters are key in the 

recommendation system. 

4.1.2. Cost per Request 

Another key performer is the cost per request, which is 

used to effectively evaluate the monetary performance of 

the system in terms of the amount spent and the number of 

recommendations produced. The Cost per Request while 

using the serverless architecture was observed to be 

$0.0004. This Figure is important to understand because 

both AWS Lambda and SageMaker use a pay-per-use price-

setting model. Using serverless infrastructure, the system 

does not have some costs that come with traditional 

computing; for instance, having a fixed EC2 means one has 

to pay even if the instances are not in use. However, 

Lambda and SageMaker provide a pay-what-you-use billing 

model where you are charged according to the execution 

time and resources taken for the CPU cycle. This flexibility 

helps holders of recommendation engines avoid the 

difficulty of having high operating costs when the number 

of customers is not high. Labour- the labour-shedding 

potential of the design means that firms are in a position to 

cut costs and, hence, have improved margins. 

4.1.3. Scaling Efficiency  

Scalable efficiency is one of the significant factors that 

determine the capacity of the system to deal with enhanced 

traffic and the number of user requests at given intervals. 

The testing concluded that the recommendation engine had 

a splendid ability to scale with a 99.8% efficiency rating. 

This means that the system was also elastic in the sense that 

the resources required scaled directly in proportion to the 

number of user requests in order to provide the correct 

response rate at the peak usage periods. AWS Lambda has a 

layered architecture, meaning it scales automatically 

depending on the application's number of requests. Lambda 

scaling works based on user interactions, and it will 

dynamically change the number of instances of a function 

allocated based on the usage it receives momentarily. This 

dynamic scalability is important for today’s application, 

where the workload varies at different times because the 

recommendation engine can easily handle lower and higher 

loads of work.  
Table 2. System performance metrics 

Metric Value 

Average Latency 150ms 

Cost per Request $0.0004 

Scaling Efficiency 99.8% 

4.2. Cost Analysis 

Eliminating wasteful costs is a key benefit fitting into 

the serverless computing model for the AI-based 

recommendation engine. Unlike prior computing paradigms 

that assume specific systems where the client needs to 

manage and provision these resources, e.g., Amazon EC2 

instances, serverless services like AWS Lambda and 

SageMaker use a pay-per-use model. This approach leads to 

a concept of operational saving since organizations can only 

afford costs that are affiliated with the use of such utilities 

instead of overhead costs. The fact that with the help of the 

serverless model, it is possible to leave no room for idle 

resource costs and, at the same time, provide top-class 

computing performance makes this concept appealing to 

contemporary applications. 

4.2.1. Cost Comparison with Traditional Architectures  

To evaluate the cost benefits, a cost breakdown 

comparison was made between the serverless stack and a 

more traditional stack host using dedicated EC2 instances. 

The credibility of the choice of a serverless solution was 

discovered throughout the performance testing process, 

which showed that additional costs of $0.0004 per request 

would be required. This takes into account the operating 

costs of AWS Lambda, including the carrying charges for 

each call, together with the real-time inference costs in 

Amazon SageMaker. In contrast, in a traditional design, 

there are permanent active EC2 instances, so if they are 

over-provisioned for peak loads, they may become very 

expensive when running all the time. Even on standby, the 

cost incurred in managing these instances demonstrates how 

resourceful additional traditional models are. 

4.2.2. Over-Provisioning and Its Implications 

An issue that makes conventional architectures 

unattractive is the dependency on allocating ample resources 
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to meet variances in traffic demands. This means that to be 

prepared for maximal loads, organizations must purchase 

and provide enough computing power in advance. 

Consequently, existing resources lay idle during low 

utilizations, incurring avoidable expenses. Serverless works 

to overcome this problem by self-scaling systems to meet 

the current number of users’ requests in real-time. As such, 

the cost implication of the serverless solution was 45% 

cheaper than the traditionally established one. This alone is 

a good argument for moving to a serverless architecture, 

particularly if the business deals with volume fluctuations. 

4.2.3. Cost Efficiency Breakdown 

A brief discussion of cost provides insights into the 

role of different AWS services to the broad affordability of 

the serverless approach to architecture. AWS Lambda has a 

straightforward pricing model of charging based on the 

number of requests and the amount of time the functions 

take to run, and therefore, it is billed only when the 

functions are in use. Lambda functions only operate when 

invoked by some user activity, such as a page view, 

meaning there are no charges for service idling. Thus, this 

service is well-suited for applications likely to have sporadic 

usage. Amazon SageMaker, in turn, allows real-time model 

inference in the per-inference pricing by increasing the price 

of per-inference as the number of made inferences grows. 

The recommendation engine also scales SageMaker’s 

managed infrastructure to efficiently allocate resources, 

eliminating operational costs. Both services combined 

provide conditions in the context of which the system can 

promptly react to users’ actions and, at the same time, keep 

costs low. Furthermore, the web application utilizes the 

cost-effective pay-as-you-go model provided by Amazon 

DynamoDB and Amazon S3 to store data. These services 

come with costs of data ULS [used logical space] and Read 

Access ULS with no more need for constant resource 

provisions. 

4.2.4. Variable Traffic and Cost Implications 

The savings are clearly visible in periods of variable 

traffic. In the traditional EC2-based model, constant 

resource maintenance for peak times incurs high costs 

during off-peak periods as resources remain idle. Serverless 

architecture, on the other hand, scales automatically to fit 

user demand, enabling organizations to only pay for the 

resources actually used. This capability guarantees that the 

costs are on-demand usage and is, therefore, more 

economical in the long run. 

5. Conclusion 
As part of the related work in this paper, we proposed 

a serverless AI Recommendation system that utilizes AWS 

Lambda and SageMaker to provide recommendations while 

optimizing for efficiency, scalability and cost. One of the 

major benefits of the serverless architecture is fully implied 

by its name – it is operationally cheap. Essentially, through 

the concept of payment for use rather than initial capacity, 

chargesÏ of resources and services that would face long 

periods of insignificance in conventional resource-heavy 

structures can be avoided. This needs to happen, particularly 

in today’s fast-paced digital environment, where success 

often depends on the organization’s ability to adapt to the 

users’ needs. This flexibility to adjust the scale of system 

usage in response to interactions with users means that 

performance consistently remains high despite the amount 

of activity without requiring daily intervention or resource 

allocation. 

By addressing both collaborative filtering and content-

based filtering techniques, the engine accurately constructs 

real-time recommendations with a latency of less than 150 

milliseconds. This swift processing capability of 

suggestions makes it possible to provide users with 

suggestions at the right time, which is important for 

customer engagement and conversion in today’s highly 

competitive markets. This design makes it easy for the 

system to scale to any level of traffic to guarantee that the 

users continuously enjoy the best service, as it can expand 

or shrink as the traffic demands. 

Subsequent work for future studies will be aimed at 

improving the flexibility and accuracy of the 

recommendation engine. One of them is the application of 

high deep learning models for increasing the accurate rate of 

recommendations. Further, neural collaborative filtering can 

provide more complex user behaviors and preferences by 

using other methods like Recurrent Neural Networks 

(RNN). Further, structural adjustments that will enhance the 

utilization of resources and response rates will also be made, 

especially as the uptake of the interactions increases. It is 

also possible to expand the system’s capabilities in terms of 

its learning potential to add the next layers involving 

mechanisms for feedback, enabling the system to adjust and 

further fine-tune recommendations in response to user 

feedback received in real-time. 

In summary, using a serverless AI recommendation 

model is a viable solution when an organization wants to 

adopt machine learning into its digital strategy. This means 

that it is cost-effective, can handle big volumes, and works 

at high speeds as a tool for competitive online services. To 

move forward with this technology further, we have great 

expectations that this technology can help to provide a better 

experience for users in different fields of interest, such as 

the electronics business, entertainment, etc. 
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